特高潮合集hd,插曲视频免费高清观看,搞av在线电影,军人的粗大(h)拔不出来

Stanford Department of Chemistry Banner Image
----------------
Search Department of Chemistry
--------------
--------------
--------------
--------------
--------------
--------------
--------------
--------------
--------------
--------------
--------------


|
Chemistry Faculty :
Faculty Research Interests
Hongjie Dai
Hongjie Dai

Title: Associate Professor (b. 1966)

Education: B.S., 1989, TsingHua University; M.S., 1991, Columbia University; Ph.D., 1994, Harvard University

Awards: Postdoctoral Fellow, 1994-1995; Harvard University, Postdoctoral Fellow, 1995-1997; Rice University. Camille and Henry Dreyfus New Faculty Award, 1997; Terman Fellowship, 1998; Packard Fellowship for Science and Engineering, 1999; Alfred P. Sloan Research Fellow, 2001; American Chemical Society Pure Chemistry Award, 2002; Camille Dreyfus Teacher-Scholar Award, 2002; Julius Springer Prize of Applied Physics 2004

Research Area: Physical Chemistry

Phone: 650-723-4518

E-mail: hdai@stanford.edu

-------------
Principal Research Interests

The research of my group interfaces with chemistry, physics, materials science, and biological and medical science. We are interested in solid state and soft biological materials that have well-defined atomic structures. Our work is in the areas of materials chemistry, solid state chemistry and physics, scanning probe microscopy, molecular electronics, novel chemical and biochemical sensors and nanomaterial based biological transporters and carriers for drug, DNA and protein delivery and novel therapeutics applications of nanomaterials. Specific projects include, (1) Nanotube synthesis including self-oriented multi-walled carbon nanotube arrays [Fan et al., Science, 1999], highly quality single-walled carbon nanotubes (SWNTs) by chemical vapor deposition (CVD) and their patterned growth on substrates [Kong et al., Nature, 1998; Soh et al., Appl. Phys. Lett., 1999;] and single particle patterning for nanotube growth [Javey et al., 2005, JACS]. (2) Fundamental electrical and electromechanical Properties of Nanotubes [Tombler, Nature, 2000; Cao, PRL, 2003 & 2004; Kong, PRL, 2001]. (3) Suspended nanotube synthesis and quantum transport [Cassell, JACS, 1999; Franklin, 2000; Cao, PRL, 2004]. (3) Nanotube Molecular Sensors and Biosensors. We are exploring nanotubes as novel electronic sensors for gases and biomolecules in solutions [Kong et al., Science, 2000; Chen, PNAS, 2003; Chen, JACS, 2004]. (3) Molecular electronics with ultrahigh performance [A. Javey et al., Nature Materials, 2002; A. Javey, Nature, 2003]. (4) Organic Electronics with Quasi 1D Electrodes [Qi, JACS, 2004]. (5) Intracellular Molecular Transporters and Near Infrared Nano-Therapy. We showed recently that nanotubes are transporters capable of shuttling various cargos (e.g. proteins and SiRNA) across cell membranes [Kam, JACS, 2004&2005]. We also developed a method to destruct cancer cells selectively by using nanotubes and near-infrared light [Kam, PNAS, 2005]. This is an exciting new area in nanobiotechnology in our group with many exciting opportunities ahead. (6) Germanium Nanowires. We are exploring novel synthesis, characterization and applications of semiconducting nanowires [Wang, Angew. Chemie, 2002 *2005; JACS, 2004&2005].

-------------
Representative Publications

1) 揅arbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction,?/STRONG> N. Wong Shi Kam, M. O扖onnell*, J. A. Wisdom, and H. Dai, PNAS, 102, 11600-11605, (2005).

2) 揅hemical Synthesis Routes to Nanotube Molecular Electronics,?/STRONG> H. Dai, Accounts of Chemical Research, 35, 1035-1044 (2002).

3) 揃allistic Carbon Nanotube Field Effect Transistors,?/STRONG> A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature, 424, 6949 (2003).

4) 揘anotube Molecular Transporters: Internalization of Carbon Nanotube-Protein Conjugates into Mammalian Cells,?/STRONG> N.W.S. Kam, T.C. Jessop, P. Wender, and H. Dai, J. Am. Chem. Soc., 126, 6850-6851 (2004).

5) 揘on-covalent Sidewall Functionalization of Single-walled Carbon Nanotubes for Protein Immobilization,?/STRONG> R. Chen, Y. Zhang, D. Wang, and H. Dai, J. Am. Chem. Soc., 123 (16), 3838-3839 (2001).

6) 換uantum Interference and Ballistic Transmission in Nanotube Electron Wave-Guides,?/STRONG> J. Kong, E. Yenilmez, T. Tombler, W. Kim, L. Liu, S.Y. Wu, C.S. Jayanthi, R. Laughlin, and H. Dai, Phys. Rev. Lett., 87, 106801 (2001).

7) 揘anotube Molecular Wires as Chemical Sensors,?/STRONG> J. Kong, N. Franklin, C. Zhou, S. Peng, J.J. Cho, and H. Dai, Science, 287, 622 (2000).

8) 揜eversible Nanotube Electro-mechanical Characteristics Under Local Probe Manipulation,?/STRONG> T. Tombler, C. Zhou, L. Alexeyev, J. Kong, H. Dai, W. Liu, C Jayanthi, M. Tang, and S.Y. Wu, Nature, 405, 769 (2000).

9) 揝elf-Oriented Regular Arrays of Carbon Nanotubes and their Field Emission Devices,?/STRONG> S. Fan, M. Chapline, N. Franklin , T. Tombler, A. Cassell, and H. Dai, Science, 283, 512 (1999).

10) 揝ynthesis of Single Single-Walled Carbon Nanotubes on Patterned Silicon Wafers,?/STRONG> J. Kong, H.T. Soh, A. Cassell, C.F. Quate, and H. Dai, Nature, 395, 878 (1998)

Home | Department Overview | Academic Programs | Events | Faculty | Facilities
Contact Us | Stanford Home | Chemistry Intra-Department | Webmaster | ?2005 Stanford University. All Rights Reserved.

This file last modified Monday, 10-Jul-2006 13:53:00 PDT

Website by Stanford Design Group
主站蜘蛛池模板: 龙游县| 日照市| 汽车| 宜春市| 黔江区| 始兴县| 广平县| 五指山市| 平湖市| 鄯善县| 湖南省| 右玉县| 沂源县| 安溪县| 昌邑市| 榆社县| 红桥区| 周至县| 德令哈市| 阿城市| 平远县| 潜山县| 石楼县| 濉溪县| 泰来县| 徐州市| 中牟县| 克山县| 文登市| 扎兰屯市| 淮南市| 江油市| 麦盖提县| 青龙| 厦门市| 英山县| 延吉市| 伊通| 襄樊市| 河北省| 江都市|